
Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 1

Paranoid Programming

Techniques for Constructing Robust Software

Rick Harper
Stratus Computer, Inc.

rick_harper@alum.mit.edu

“The action cannot be completed because Unknown is busy.”
µ$Word, when opening this document.

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 2

Attitude Adjustment

Stratus sells Continuous Availability (CA) computer s

Customers expect CA computers to run 24 hours per d ay, 365 days
per year

Software errors are a leading cause of system downt ime

Software quality and robustness are especially impo rtant

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 3

Prime Directive

Code written for Continuously Available systems sho uld

Work correctly regardless of input, system load, or state

Not be the source of system failure through action or
inaction

Contain and not propagate errors

Properly diagnose and reject all bad input

Recover from errors and bad state

Make the consequence of the error proportional to i ts
severity

Log significant events for later debugging

Evolve compatibly over time

It should be paranoid !

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 4

Paranoid Programming Course

This presentation outlines some techniques for deve loping
paranoid code

Based on intensive one-day course taught at Stratus

Course Objectives

Understand the effects of other people’s hardware a nd software
faults on computer system dependability

Acquire a tool kit of software construction techniq ues to help
reduce the occurrence of failures due to other peop le’s
hardware and software faults

Be able to implement these techniques effectively o n current
and planned projects

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 5

Course Outline

- Nature and Significance of the
Problem

- Terminology and Buzzwords
- Software Techniques for

Tolerating Errors
- General Framework and

Observations
- Checkpoint and Rollback
- State Rejuvenation
- Recovery Block
- Process Pairs
- MultiVersion Programming
- Process Groups
- Robust Data Structures
- Structure Marking
- Control Flow Monitoring
- Programming in a High-

Availability Environment

- Techniques for Reducing Bugs
- Maintaining a Ship and

Debug Version
- Assertions
- Designing Error-Resistant

Interfaces
- Avoiding Memory Theft
- Making the Compiler Work

for You
- Avoiding Risky Coding Style
- Error Handling and

Reporting Principles
- Concurrent Programming
- Testing
- Inspections

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 6

NATURE AND SIGNIFICANCE OF THE PROBLEM

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 7

Causes of Outages

Non-Fault Tolerant
Systems

Fault Tolerant
Systems

Hardware 50% 8%

Software 25% 65%

Communications /
Environment

15% 7%

Operations /
Procedures

10% 10%

Software-induced outages dominate hardware-induced outages in
fault tolerant systems

Procedural and operations-induced outages are signi ficant

From “Dependable Computing: Concepts, Limits, Challe nges,” by J. C. Laprie, FTCS-25.

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 8

Sources of Outage-Inducing Software Flaws:
Tandem 1989

comm
42%

database
34%

OS
10%

application
14%

For Tandem, most outage-inducing software flaws are in
communications and database software

From “A Census of Tandem System Availability Between 1985 and 1990,” by Jim Gray

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 9

Tandem Guardian Software Halts by Cause

Fault Category % %
Incorrect computation 3 3
Data fault 12 12
Data definition fault 3 3
Missing operations: 20
 Uninitialized pointers 6
 Uninitialized nonpointers 4
 Not updating data structures on
 occurrence of certain events

6

 Not telling other processes on
 the occurrence of certain events

4

Side effect of code update 4 4
Unexpected situation: 29
 Race/timing problem 14
 Errors with no defined error-handling
 procedures

4

 Incorrect parameters or invalid calls
 from user processes

3

 Not providing routines to handle
 legitimate but rare operational
 scenarios

8

Microcode defect 4 4
Others 10 10
Unable to classify 15 15

20% of halts caused by missing operations

29% were caused by unanticipated situations

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 10

Tandem Guardian Software Halts by Severity

Many software halts take down more than one process or
Fault Severity %
Single Processor Halt 79%
Multiple Processor Halt 18%
Halt during Reboot 1%
Unable to Classify 2%

Most software halts are caused by known bugs
Fault Type %
First Occurrence 24%
Recurrence 61%
Unidentified 15%

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 11

Analysis of Tandem Error Logs

What process was running just prior to halt?
Active Process Cause Breakdown % %
Interrupt Handler process control 5% 41%

memory management 2%
message system 14%
processor control 1%
hardware-related 16%
unknown 2%

System monitor memory management 4% 4%
Memory Manager process control 31% 32%

memory management 1%
All Other Privileged Processes process control 1% 14%

memory management 1%
communication product 8%
TMF 1%
tape process 1%
unknown 1%

Unknown hardware-related 7% 9%
message system 2%

Interrupt handling and memory management code seem to be
particularly troublesome

Touches hardware and is highly concurrent

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 12

Fault Propagation in the UNIX OS

Lee and Iyer injected 500 simulated hardware and so ftware faults
into SunOS 4.1.2 kernel

Results of hardware fault injection:

System Failure
Multiple User

Application Failure
No error

Fault Type Without Self-Reboot With Self-Reboot System Hang Fault Avoided > 20 Mins. Latency
Memory fault in
text segment

0.02 0.22 0.02 0 0.06 0.68

Memory fault in
data segment

0.02 0.14 0 0.08 0.18 0.58

Bus fault on
address line

0 0.82 0 0.1 0.06 0.02

Bus fault on
data line

0 0.76 0 0.1 0.14 0

CPU fault in
registers

0 0.66 0 0 0.34 0

Most injected hardware faults in SunOS 4.1.2 either caused reboot
or were never detected

BUT

Memory faults in text segment caused a system hang. ..very bad

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 13

Fault Propagation in the UNIX OS, cont’d

Results of software fault injection:

System Failure
Multiple User

Application Failure
No Error

Fault Type With Self-Reboot System Hang Fault Avoided > 20 Mins. Latency
Uninitialized
pointer

0.46 0 0 0 0.54

Misassigned
pointer

0.4 0 0 0 0.6

Missing
condition check

0.22 0 0.02 0.2 0.56

Incorrect
condition check

0.26 0 0 0.12 0.62

Uninitialized /
misassigned
pointer data

0.26 0.02 0.06 0.06 0.6

Most injected software faults in SunOS 4.1.2 either caused reboot or
were never detected

BUT

Pointer faults caused a system hang

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 14

VOS 1992 Crash Data

63% of all VOS crashes occurred around hardware eve nts

30% occurred around maintenance events

33% occurred around other events

A hardware event is

When the hardware is not in a normal running state (e.g.,
booting or power-fail)

Some unusual event is happening with a piece of har dware

Hardware maintenance is occurring

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 15

Tandem Integrity NonStop/UX Field Data

Modules containing panic-inducing faults

Module %

Device Drivers (async, ethernet, etc.) 31

Memory Subsystem 16

Streams Mechanism 12

Process Management 6

Machine-Dependent VM Code 8

Shutdown / Boot Process 8

Filesystem 10

I/O Subsystem 3

Mirror Driver 1

Interrupt Handling 1

Diagnostic / Integration 3

MIDAS (monitoring facility) 1

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 16

Tandem Integrity NonStop/UX Field Data

Programming errors causing panic-inducing faults

Programming Error %

Pointer made NULL and later used 17

Pointer assigned to wrong location 9

Stale pointer left from before 2

Missing check for an exception 26

Incorrect algorithm or code placement
(includes major algorithm mistakes)

26

Unaligned data structures 4

Memory allocation / deallocation 11

Unneccesary code left in the OS 4

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 17

Summary of Empirical Data

Software-induced outages increasingly dominate hard ware-induced
outages

For Tandem, most outage-inducing software flaws are in comm and
DB software

20% of Tandem Guardian halts caused by something so mebody
forgot to do

29% of Tandem Guardian halts caused by situations s omebody
didn’t anticipate

18% of Tandem Guardian faults take down more than 1 processor

61% of Tandem Guardian faults are caused by known b ugs

Most Tandem Guardian halts occurred during interrup t handling
(41%) and memory management (32%) code

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 18

Summary of Empirical Data

Most injected hardware and software faults in SunOS 4.1.2 either
caused reboot or were never detected, but some memo ry and
pointer faults caused system hangs

63% of 1992 VOS crashes occurred around hardware ev ents

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 19

Ariane 501 Crash

4 June 1996 maiden flight of Ariane 5

40 secs into flight, Flight Control
Computer (FCC) commands nozzle
actuators to hard over position

Ariane 5 undergoes aero breakup
and subsequent destruction

DM 1200 million down the drain

FCC

IRS IRS

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 20

Ariane 501 Causal Factors

Inertial Reference System (IRS) informed FCC the mi ssile is flying
sideways

IRS emitted diagnostic information to FCC

This was interpreted as attitude data

Both Primary and Backup IRS failed

Unhandled exception due to overflow when converting 64-bit
float to 16-bit integer in IRS horizontal velocity calibration code

Other conversions were protected by exception handl ers

No justification for omitting protection for this v ariable

IRS cal code reused from Ariane 4

Continues to run after liftoff in case of short lau nch hold

Not needed in flight for Ariane 4

Not needed at all for Ariane 5

Ariane 5 horizontal velocity >> Ariane 4

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 21

Ariane 501 Causal Factors

Error not excited during test

IRS cal code not tested under Ariane 5 trajectory

Not flight critical

Spec says halt IRS when unhandled exception

Assumed random hardware faults only

Assumed software is perfect

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 22

Ariane 501 Lessons

IRS-FCC interface was insufficiently robust

Fault model incomplete: did not include SW errors

Error handling requirements not appropriate for com mon-mode SW
errors

Critical assumptions were not documented, justified , or reviewed

New operational conditions violated design-time ass umptions of re-
used software

Gratuitous functionality does not go away just beca use it is no
longer needed

Testing under realistic operational conditions was omitted

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 23

Software Error Genesis

Design Errors

60-65% of all SW faults introduced here

Incomplete, missing, inadequate, inconsistent, uncl ear
requirements

Requirements not fitting physical models

Correction cost is 10X cost of correcting coding er rors

Implementation Errors

35-40% of all SW faults introduced here

errors proportional to

Size of code

Number of paths through code

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 24

TERMINOLOGY AND BUZZWORDS

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 25

Dependability

Property of a computing system which allows justifi able reliance to
be placed upon delivered service

Means for achieving dependability

fault prevention: writing bug-free code

fault removal: testing and fixing bugs

fault forecasting: predicting and avoiding failures

fault tolerance: tolerating failures as they occur

Quantifications of dependability are numerous

Reliability, availability, N-fail/op, ...

A system can be dependable without being fault tole rant

A system can be fault tolerant without being depend able

† These definitions are based on the International F ederation of Information Processing Working Group 1 0.4
document “Dependability: Basic Concepts and Terminol ogy,” Anderson et. al., December 1990.

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 26

Failure

Deviation of delivered service from specification

failure domain

value - the value of the delivered service does not comply with
the specification

timing - the timing of the delivered service does n ot comply with
the specification

failure perception

consistent - all users have identical perceptions o f the failure

inconsistent - users have different perceptions of the failure

failure severity

benign - failure consequences are of same order of magnitude
as benefit of service delivery

catastrophic - failure consequences are incommensur ably
greater than benefit of service delivery

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 27

Error

Corruption of system state liable to lead to failur e

Latent - not recognized by detection mechanism

Detected - recognized by detection mechanism

Example

Corrupted contents of RAM in text area

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 28

Fault

Adjudged or hypothesized cause of error(s)

Active - capable of producing an error

Dormant - incapable of producing an error

Physical Fault Models

Stuck-at

Inversion

Symmetric / asymmetric

Permanent / intermittent / transient

Software Fault Models

Bohrbugs: permanent; Heisenbugs: transient

These are all subsets of “Byzantine faults”:

Arbitrary (even malicious) fault manifestations

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 29

Fault Occurrence and Error Processing Behavior

There are several steps involved in handling faults correctly

Not all systems go through all steps

The name of the game is to prevent faults from caus ing failures

fault arrival and error production

error manifestation

error compensation

error detection

fault diagnosis

error processing - recovery

fault passivation - reconfiguration

time

error propagation

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 30

Error Compensation

Also known as fault masking

Possible when system state contains enough redundan cy to enable
delivery of error-free service from erroneous inter nal state

Needed when glitch-free service delivery is require d

May be all that is needed for some mission regimes

Does not imply error detection, error recovery, or fault passivation

Examples

N-modular redundancy with voting for general-purpos e
computation

Error correcting codes for data transmission and st orage

Averaging effect of many signal processing algorith ms

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 31

Error Containment Region

Errors should not propagate past error containment region
boundaries

Errors which do so can result in system failure

Hardware Examples

Voting plane

Decoder at memory output

Decoder at bus interface

Voting actuator

Software Examples

Software voter

Recovery Block acceptance test

Data structure integrity check

Control flow check

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 32

Error Manifestation Boundary

Faults are detected via error manifestation

Error manifestation boundaries should be defined

Error detection mechanisms reside at error manifest ation
boundaries

Errors should be quickly flushed to error manifesta tion boundaries
to expedite detection, diagnosis, and recovery

The sooner the error is detected, the easier recove ry will be

“Fix it so it breaks”

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 33

Error Detection

The use of error detection mechanisms at Error Mani festation
Boundaries to determine the existence of errors

proactive: go out hunting for errors

reactive: wait for errors to happen

Facilitates subsequent error recovery, fault diagno sis, and fault
passivation

Examples

Syndrome attached to voter/comparator

Parity on memory fetches

Block codes on data transmissions

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 34

Error Processing - Recovery

The process of returning the system to an acceptabl e physical and
computational state

Explicit recovery operations may or may not be requ ired

Depends on how well error propagation can be contro lled

Depends on whether state information is stored redu ndantly

Depends on temporal constraints

Recovery is essentially a semantic process

Must consider the physics of the system in order to subdue
erratic behavior

Corrective action must not aggravate any transient already
caused by the failure

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 35

Error Recovery

Computational state must be corrected

If state information is stored stably then a valid copy can be
retrieved in a straightforward manner

If only a single copy of state information existed then the
system state has to be reconstructed

Internal parameters with limited history can be rei nitialized to a
known state if the resulting transient is not too g reat (e.g.,
digital filter values)

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 36

Fault Diagnosis

The identification of the fault location or ambigui ty group

Enables fault passivation

Fault diagnosis issues

Coverage with respect to a class of faults

Assuring that all participants arrive at consistent diagnoses

Ambiguity group localization

Verification and validation of coverage

Intrusiveness

Physical and temporal overhead

Fault classification: permanent, transient, etc.

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 37

Fault Passivation (Reconfiguration)

Reconfiguration is the process of

Isolating a failed element so it no longer has any influence on
system behavior

Reassigning the function of the failed element to a good
element or group of elements

Isolation and reassignment may be

Logical – there are multiple sources for a paramete r and the bad
one is simply ignored

Electrical – removing power from the failed element or switching
in a replacement element

Physical – elements are separated by a reconfigurat ion actuator

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 38

Fault Passivation (Reconfiguration)

Reconfiguration can be automatic or initiated by a human operator

Since a substantial proportion of outages are due t o
maintenance and procedural errors, automatic means are
preferred

Reconfiguration/recovery must be completed quickly to prevent
failure due to near-coincident faults

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 39

Fault Containment Region

A fault containment region is a bounded group of components or
functionality

An arbitrary fault inside a region cannot propagate across the
boundary to cause another region to fail or to misb ehave in any way

Conversely, faults outside the region cannot physic ally affect
proper operation inside the region

However, errors (the effects of faults) may propaga te to other
regions

Proper organization of fault containment regions is critical to
achieving fault tolerance

A physical fault containment region requires, (1) e lectrical isolation,
(2) independent clocking, (3) independent power, (4) physical
isolation

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 40

Coverage

Numerical quantification of the effectiveness of a fault tolerance
technique

Different coverage numbers will apply to different phases of fault
and error handling

Example

Effectiveness of a fault tolerance technique with r espect to a
class of faults

Detection coverage of stopping faults

Tolerance coverage of babbling faults

Tolerance coverage of Byzantine faults

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 41

Coverage

Can be expressed probabilistically

Probability of detecting stopping faults

Probability of tolerating babbling faults

Can be determined empirically in some cases

Can not be determined empirically in most cases

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 42

SOFTWARE TECHNIQUES FOR TOLERATING
FAILURES

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 43

General Observations and Implementation Principles

Define success criteria for the function you are de veloping

Safety (what must never happen)

Liveness (what must always happen)

Understand your environment, expected failure modes , and
acceptable error handling

What do you do when you can’t go on?

Examples: single node (best-effort), cluster (fail- fast)

Select proactive or reactive technique

Proactive techniques search for or attempt to predi ct errors

Reactive techniques wait for errors to occur

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 44

General Observations and Implementation Principles

Define error containment boundaries

Partition application so a portion can be down with out entire
application being down

Define error manifestation boundaries and detection mechanisms

At least based on safety and liveness; preferably b ased on
application specific checks

Always check inputs and outputs

Always check return values and error codes

Balance overhead with detection coverage

Define error handling actions appropriate to safety , liveness, and
environmental requirements

Log significant events for later debugging

Fail loudly, don’t fail silent...those who come aft er will thank you

Don’t assume HW or SW are operating correctly

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 45

General Observations and Implementation Principles

Test all error detection and recovery code

It is important but not core to central functionali ty; no revenue $
tied to it

It gets implemented last

It gets tested least

It is hard to test

It is invoked under periods of maximum system stres s

In telecom applications (e.g., 5ESS)

50% LOC on core functionality

50% LOC on error handling

This is an appropriate mix for critical application s

Human error-making patterns are repetitive - catego rize and log
your errors and periodically review them

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 46

Rollback and Recovery

A menagerie of techniques

Checkpoint and Rollback

Recovery Blocks

Process Pairs

Transactions…

Overall Idea

Save snapshot of correct state somewhere

Do work, logging inputs and events

Check for errors

If error,

Roll back or restore process(es) to state snapshot

Optionally, inculcate nondeterminism

Replay the computation

Else

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 47

Checkpoint and Rollback

A reactive technique

Applicability

Where cost of failure is an annoyance

Soft HW and (primarily) SW failures

Works on nonredundant or redundant architecture

Where you have time to retry a computation

When you can identify checkpoints in your applicati on

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 48

Checkpoint and Rollback Critical Assumptions

Errors can be detected

Checkpoints can be identified and efficiently copie d to stable
storage

Inputs and events can be logged

Computation can be replayed

Replay is deterministic with respect to applied inp uts

Replayer can access checkpointed data

Rollback can be confined to a small number of proce sses, or
interprocess interactions can be replayed or are id empotent

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 49

Checkpoint / Rollback Approach (1)

Develop error detection mechanisms

Internal to application: code- or structure-based s elf checks

External to application: probes, signals, null mess ages to app,
heartbeats, ...

Determine data to be checkpointed

Transparent to application

Compile-time

Run time: checkpoint all volatile state, checkpoint dirty data

Visible to application

Allocate data to be checkpointed to appropriate reg ion: ISIS,
libft, ...

Must be stored in stable storage

Must be accessible to process that is performing th e retry

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 50

Checkpoint / Rollback Approach (2)

Determine events to be logged and replayed

Messages

Events

Transactions

Determine checkpoint times; options are:

Transparent to application

Based on elapsed time

Based on message arrival

Based on amount of dirtied state

Visible to application

Based on critical function invocation / exit

Figure out how you are going to replay the computat ion

Figure out what you are going to do if error is per sistent

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 51

Example: Tandem HATS / AT&T “libft” Technology
1

watchd: distributed watchdog daemon

Monitors registered application processes on primar y and
backup nodes for crash or hang; also monitors nodes

Sends null message or signal to primary every T sec onds, or
awaits heartbeats

If no response and primary node is unfailed, restar ts process on
primary

If primary node is failed, restarts process on back up node

Uses checkpoint data and message logs to replay com putation

1 Also check out

http://www.cs.utk.edu/~plank/ckp.html and
http://warp.dcs.st-andrews.ac.uk/warp/systems/checkpoint/source.html

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 52

Example: AT&T “libft” Technology
libft: set of reusable UNIX library calls for check pointing and
message-logging

Allows app programmer to designate variables to be
checkpointed via “critical()” call

Allows app programmer to trigger checkpoints via
“checkpoint()” call

Permits logging of received and transmitted message s on
primary and backup nodes for replaying, via “ftread ()” and
“ftwrite()” calls

Can reorder message arrivals in attempt to avoid He isenbugs

nDFS: n-Dimensional File System

Provides replicated stable storage to allow backups access to
checkpointed data

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 53

Checkpoint and Rollback Cost Effectiveness

Development Cost

Based on AT&T libft experience, can insert watchd/l ibft/nDFS in
existing telecom apps quickly (weeks)

Using portable watchd/libft/nDFS library - didn’t h ave to write
difficult checkpointing code from scratch

Run time cost (no faults)

<14% for libft checkpointing approach

Effectiveness

On the order of 90% coverage of non-design errors

AT&T reports highly effective at tolerating certain known bugs
that they can’t afford to fix

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 54

Checkpoint / Rollback Advantages

Works, mostly

AT&T has had success in tolerating faults it can’t afford to fix

Runtime overhead acceptably low: say 15%

Not all-or-nothing: can use judiciously in critical functions and
integrate seamlessly

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 55

Checkpoint / Rollback Disadvantages

Defining checkpoint data and intervals is tricky

Checkpoint / rollback algorithms in concurrent syst ems are
exceedingly complex and potentially slow

Must establish recovery lines and avoid domino roll back

Irreducible overhead for checkpointing: processing, comm, storage

Efficient techniques are not transparent; transpare nt techniques are
not efficient

Fault model is moderately weak

Only as good as error detection means

Doesn’t work for persistent software errors

Error detection coverage is critical but usually ne glected

Checkpoint placement and frequency are critical: pr ice /
performance tradeoff must be made

Could require double the run time to handle faults

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 56

State Rejuvenation
A proactive technique: use it to avoid failures

Applicability

Where long-running processes gradually degrade syst em state
due to

Memory leaks, memory caching, weak memory reuse,
memory fragmentation, unreclaimed resources, bitrot , ...

Where processes use canned (or old) code whose sour ce can’t
be modified

Critical Assumptions

No need to detect errors...you get them before they get you

Checkpoint data can be identified and copied to sta ble storage

Can generate checkpoint and restart scheme that let s you pick
up where you let off

Rollback can be confined to a small number of proce sses

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 57

State Rejuvenation Example

Buggy Subroutine
#define MEG (1024*1024)
unmodifiable_call(arguments)
{
/* initialization */

if(ptr1 = malloc(MEG)) == NULL) exit(1);
if(ptr2 = malloc(MEG)) == NULL) exit(2);

/* incredibly complex control flow */
free(ptr1);

/* more incredibly complex control flow */
free(ptr2);

}

Without State Rejuvenation With State Rejuvenation
main() main()
{ {
while(1) int i = 0;

{ while(1)
new_state = unmodifiable_call(some_arguments); {
write_output(new_state); new_state = unmodifiable_call(some_arguments);
} write_output(new_state);

if(i++ % REJUV_PERIOD == 0)
} {

flush_outputs()
checkpoint()
rollback()
}

}
}

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 58

State Rejuvenation Cost Effectiveness

Development and maintenance cost

Somewhat less than checkpointing, since don’t have to design
general purpose error detection and recovery techni ques

Run time cost

Same as checkpointing; on the order of 15%

Runtime cost is predictable since you determine how often to
rejuvenate

Effectiveness

Has been shown to be very effective when applicable : memory
leaks, etc.

Can sometimes reduce execution time by aggregating
fragmented state

Can run during slack times to minimize performance impact

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 59

Issues with State Rejuvenation

Limited applicability

Essentially a boutique solution

Has most of checkpointing / rollback’s problems:

Tricky to define checkpoint data

Must empirically determine how often to rejuvenate

Not transparent

Serious difficulties in multiprocessing systems

Best used sparingly when you know that you have a l ongevity flaw

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 60

Recovery Block

A reactive technique

Applicability

Where cost of failure is severe

Where must deliver service at all costs

Soft HW and (primarily) SW failures

Typically, nonredundant architecture

Where you have time to retry a computation

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 61

Recovery Block Critical Assumptions

Faults are soft and primarily due to software error s

Software errors could be design or, more probably, coding
errors

Faults do not cause app or system to crash

Faults can be corrected by retrying alternate versi on of code

Replica execution is deterministic

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 62

Recovery Block Flowchart

Primary
Alternative
Module

Alternative
Module #N

Alternative
Module #1 ...

Recovery Point

Acceptance Test
Fail

Pass

Enter RB with acceptable data

Exit RB with
acceptable data

Exit RB with
failure indication

Error Containment Boundary

Really Fail

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 63

Example: Memory Allocation

Recovery Point

State of pointer chains to be modified by allocatio n routine

Try block 1

Allocate from heap 1

Try block 2

Allocate from heap 2

Acceptance test

Sum of allocated block sizes == requested size == s ize of free
list decrement?

Free / used pointer chains connected?

If fail, restore pointer chains from recovery point and retry

If error, perform error handling appropriate for th e function and
environment

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 64

Recovery Block Cost Effectiveness

Development and maintenance cost

Approximately 60% increment for 2 try blocks

Run time cost (no faults)

Typically in the 10-20% range

Fujitsu reports 50% run time overhead for recovery block-
protected UNIX system calls

At least 2X in presence of faults

Effectiveness

Approximately 90% coverage of non-design errors

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 65

Recovery Block Advantages

Works, mostly

Makes you figure out what the code is supposed to d o by writing
acceptance tests

Makes you think of at least two ways of solving the problem

Makes you figure out what you should do if your rou tine fails

Runtime overhead acceptably low: say 15%

Not all-or-nothing: can use judiciously in critical functions and
integrate seamlessly

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 66

Recovery Block Disadvantages

Acceptance tests are critical

Single point of failure and a source of irreducible overhead

SW errors in boundary code occur significantly more often than
in main routine

Price/performance tradeoff must be made: where and how often
to place acceptance tests

Expensive

At least two copies of code must be constructed, te sted,
supported, etc.

Requires additional storage for input conditions to allow retries to
commence

Could require double the run time to handle faults

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 67

Recovery Block Disadvantages

Fault model is weak

Poorly tolerates design faults, hardware failures, OS crashes,
app crashes

How to construct recovery point

Sufficient data must be saved to enable retry

How to construct different try blocks

How many copies to be developed

Could use same code if trying to tolerate Heisenbug s and can
inculcate nondeterminism

What to do when all tests fail

Remember: context dictates actions when you can’t g o on

Multiprocessing systems suffer from domino rollback : avoidance is
complex

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 68

Process Pairs

A reactive technique

Applicability

Hard or soft HW and SW failures

Loosely coupled redundant architecture; fail fast h ardware
optional

Message-passing interprocess communication

Works best for transaction-oriented applications

Critical assumptions

Processes and hardware are fail-fast

Errors can be corrected by re-executing same code i n another
environment

No single points of failure in architecture

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 69

Overall Approach

Construct fail-fast processes

Either function correctly or detect a fault, signal failure, and
stop

Both hardware and software may be designed to be fa il fast

Fail fast processes may be constructed on non-fail- fast
hardware

Enforce fault and error containment

No shared state; processes communicate via message passing

This prevents a process from corrupting state on it s local
processor

It also facilitates construction of process pairs

Two process pair types prevail

Checkpoint / restart / message

Persistent

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 70

Checkpoint / Restart / Message Process Pairs

Primary performs the work

Secondary listens for “I’m alive” messages

In checkpoint / restart scheme, primary logs state updates to stable
storage accessible to secondary

In checkpoint / message scheme, state updates are p iggybacked on
(and may supplant) “I’m alive” messages

When secondary detects failure of primary, secondar y refreshes
state either from stable storage or from message lo g

Secondary then picks up processing where primary le ft off

“...it is the authors’ [Jim Gray and Andreas Reuter] experience that
everyone who has written [a process pair] thinks th at it is the most
complex and subtle program they have ever written.”

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 71

Checkpoint / Restart / Message Example

any input?

read it

compute new state

send new state to backup send state to backup

reply to last request

broadcast "I’m Primary"

reply

yes

no

requests
from
client

replies
to
client

am I default
Primary?

newer state?

restart

wait a second

wait a second

read it

set my state
to new state

any input?
new state in
last second?

yes
no

yes

no

no

yes

no

yes

become
Primary

Primary Secondary

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 72

Persistent Process Pairs

Suitable for transaction-based applications

Works in conjunction with transaction monitor

TM can undo partial transactions

Primary executes ACID transactions

BeginTransaction

code, code, code

EndTransaction or AbortTransaction

Amnesiac secondary (or TM or OS) listens for “I’m a live” messages

When primary fails-fast, TM undoes any transactions in progress
and resubmits them (as well as subsequent client tr affic) to the
amnesiac secondary

Persistent process pairs provided as a primitive by NonStop
operating system

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 73

Persistent Pair Example-with OS Support

requests
from

client

replies
to
client

Primary Secondary

primary?

BeginTX BeginTX

read request read request

do work do work

EndTX
EndTX

reply to client reply to client

yes

no

restart

primary?

yes

no

restart

Transaction Monitor

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 74

Advantages

Extremely successful in Tandem OLTP applications

Persistent process pairs relatively easy to program

Fault model is moderately strong: tolerates hardwar e, OS, and app
failures

High coverage (>90%) of hardware and software (incl uding OS)
faults

Does not consume too much performance at backup sit e: about
10% runtime overhead can be achieved

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 75

Disadvantages

Checkpoint / restart / message process pairs diffic ult to construct
without significant toolkit or infrastructure inves tment

Must use checkpoint / restart / message process pai rs in a non-
transaction-based application

Must develop error detection checks and signaling t echniques to
make a process fail-fast

Works best on fail-fast hardware

Works best on message-passing interprocess communic ation

Works best on loosely coupled distributed hardware architecture

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 76

Multiversion Software

Applicability

Fast real-time critical applications where no dropo ut is
acceptable: aerospace, nuclear, ground transportati on

Where cost of failure is severe

Tolerates soft or hard faults, whether in HW or SW (primarily
oriented towards tolerating SW coding faults)

Critical assumptions

Specification contains no flaws (omissions, inconsi stencies,
ambiguities)

Independent programming teams don’t make the same m istakes

Requires loosely synchronous redundant architecture

Replica execution is deterministic

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 77

Multiversion Software Development Steps

Develop specification

Constraining enough to allow version comparison

Flexible enough to allow diversity

Develop version voter

Plurality voting

Approximate voting

Generate diverse programs

Give specification to three or more independent pro gramming
teams

Random or enforced diversity

Run diverse versions on independent hardware

Perform periodic voting of version outputs

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 78

Multiversion Software Flowchart

Input

Version 1

Vote

Input Input

Version 2 Version 3

Vote Vote

FCR FCR 2 FCR 3

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 79

MultiVersion Software Cost

Development and maintenance cost

About 2.26 times the cost of single version for thr ee versions

Run time overhead

On the order of 10 to 25%

Same in presence of faults

Hardware overhead

At least 3X

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 80

MultiVersion Software Effectiveness

Case 1: Aircraft autoland control law experiment

Case 2: Leveson, et al, found that code-based self- checks were far
more effective than multiversion programming at fin ding
programming errors

Version LOC # errors error
prob

ada 2256 0 0

c 1531 568 .00011

modula-2 1562 0 0

pascal 2331 0 0

prolog 2228 680 .00013

t 1568 680 .00013

Category 3 versions:
probability

5 versions:
probability

No errors .9998409 .9997807

Single errors in one
version

.0001305 .0001915

Two distinct errors in
multiple versions

.000002048 .000002275

Two coincident errors
in multiple versions

.00002652 .00002210

Three Errors in
multiple versions

0 .000003413

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 81

Multiversion Software Issues

Specification management

Make sure all teams are using same spec

Version construction

Ensure diversity

Version resolution

Voter construction is critical from detection and p erformance
viewpoint

You get monstrosities like “approximate thresholdin g plurality
voters”

When is bitwise agreement meaningful?

Placement and frequency of voting

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 82

Multiversion Software Issues

Version synchronization

Requires fault tolerant synchronization mechanism

Version recovery

Bring faulted version to same state as nonfaulty ve rsions

Cross-channel exchange of input and output data

Consumes bandwidth

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 83

Multiversion Software Advantages

Makes you figure out what the code is supposed to d o by writing
spec and voter

Helps validate and clarify the specification

Fault model is strong

Approved by Your Government for flight- and safety- critical
systems

Constant execution time and no dropouts in presence of faults

Effective at coping with a few bad programs (if mos t versions are
good)

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 84

Multiversion Software Disadvantages

Specifications DO contain flaws (omissions, inconsi stencies,
ambiguities)

Independent programmers DO make the same mistakes

Less effective when all programs are uniformly reli able: the hard
stuff is hard for everybody

Versions may not agree in absence of faults due to roundoff error,
non-commutativity, etc. ==> complex voters

Expensive: at least three copies of code must be de veloped and
maintained

Requires 3X redundant hardware architecture plus in terchannel
communications network

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 85

Process Groups

Deterministic processes are replicated on multiple computing
nodes of a distributed system

The service provided by the replicated processes ca n be
“continuously” available when some of the replicas fail

Every replica has a copy of the common state

State updates occur in the same order on all replic as

Client communicates with a group address, not a sin gle process
address

Client and server process application code must exe cute group
membership and communication calls

Client and server process application code must exe cute group
membership and reliable multicast algorithms

global, atomic, causal, fifo, hierarchical, and oth er broadcasts

Virtual synchrony used to ensure consistency of gro up view

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 86

Process Groups Example: Database Server

Client

ServerServerServer

Salary

Database

(triplicated)

update (name, salary) query (name)

Database

Process

(triplicated)

Atomic update: Either all

servers get the update, or

none do.

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 87

Process Groups Example: Server Code; ISIS Lingo

#include “isis.h”

#define UPDATE 1

#define QUERY 2

main() {

isis_init(0);

isis_entry(UPDATE, update, “update”);

isis_entry(QUERY, query, “query”);

pg_join(“salary_DB”, PG_XFER,
send_state, rcv_state, 0);

isis_mainloop(0);

}

update(mp)

register message *mp; {

char name[32]; int salary;

msg_get(mp, “%s, %d”, name, &salary);

set_salary(name, salary);

}

query(mp)

register message *mp; {

char name[32]; int salary;

msg_get(mp, “%s”, name);

salary = get_salary(name);

reply(mp, “%d”, salary);

}

send_state() {

struct sdb_entry *sp;

for (sp = head(sdp); sp != tail(sdb); sp = sp-
>s_next)

xfer_out(“%s, %d”, sp->s_name, sp-
>s_salary);

}

rcv_state()

register message *mp; {

update (mp);

}

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 88

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 89

Process Groups Example: Client Code
#include “isis.h”

#define UPDATE 1

#define QUERY 2

address *server

main() {

isis_init(0);

server = pg_lookup(“salary_DB”);

pc_client(server);

…

…do client work: calls to update and
get_salary…

…

}

update(name, salary)

char *name; int salary; {

abcast(server, UPDATE, “%s,%d”, name,
salary, 0);

}

get_salary(name)

char *name; {

int salary;

fbcast(server, QUERY, “%s”, name, 1,
“%d”, &salary);

return(salary);

}

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 90

Process Group Advantages and Disadvantages

Advantages

Tolerates hardware, operating system, and some appl ication
failures

Works over widely distributed heterogeneous systems

Not all-or-nothing - can be deployed for critical s ervices only

Disadvantages

Not application transparent

Does not support mutually preemptible threads very well

Hierarchical groups not supported well

Performance may be low

Fault model is weak: usually fail-stop

Error detection latency may be a few seconds

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 91

Robust Data Structures

A proactive technique

Use to seek out and destroy errors before they caus e failures

A number of techniques is available

We will use linked lists to demonstrate the concept

Intended to achieve

Semantic integrity: the data’s meaning is uncorrupt ed

Structural integrity: the data’s organization is co rrect

We will discuss structural integrity techniques tod ay

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 92

Robust Data Structures

Applicability

Critical data structures having a clearly defined a nd regular
structure

Most highly developed for linked lists and trees

Critical Assumptions

Data structures can be fitted with redundancy

Execution time is available to audit and correct da ta structures

Storage is available to store essential redundant i nformation

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 93

Robust Data Structures Approach

Robust data structures contain redundant data which allow
erroneous changes to be detected and corrected by c hecks

Checks may perform on-line error detection and corr ection

Overhead and effectiveness are functions of data st ructure
access frequency

Detection / correction programs (audits) may be use d

Overhead may be tuned based on performance consider ations

Checks may be run during slack time

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 94

Robust Data Structures Approach

Robust data structures are classified as N-detectab le and M-
correctable

N-detectable: all sets of N or fewer changes to str ucture can be
detected

M-correctable: all sets of M or fewer changes to st ructure can be
corrected

Changes are defined to be arbitrary (malicious) mod ifications to the
data structure

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 95

Example: Linked List

Nonrobust design

header

node node

0-detectable, 0-correctable

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 96

Robust Linked List Design 1

Robustness additions

Store count of number of nodes

Add unique structure identifier field to each node

Link end of list to header

3header

node node

H

count

ID
ID

ID

1-detectable, 0-correctable

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 97

Robust Linked List Design 2

Robustness addition

Add pointer from successor to predecessor node

3header H ID

ID

ID

2-detectable, 1-correctable

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 98

Robust Linked List Design 3

Robustness addition

Add pointer from successor to predecessor’s predece ssor node

I
D

I
D

I
D

I
D

I
D

H1

H2

5

5

forward pointer

backward pointer

ID

ID

3-detectable, 1-correctable

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 99

Code to Correct Errors in Design 2 Linear Linked Li st (1) 2

2 Adapted from D. Taylor et. al., “Redundancy in Data Structures: Improving Software Fault Tolerance,” IEEE Trans. Software

Eng., Nov. 1980.

correctlist (void *H) {

void *P, *prevP;

int J = 0 ;

prevP = H;

P = H->next

/* Scan main body of data structure */

while (P != H) {

J++;

if((P->prev == prevP) && (p->ID == H->ID) {

/* This node looks OK */

prevP = P;

P = P->next

}

else {

/* We have a problem */

if(backscan(H, P, prevP) == CORRECTED_ERROR)

return (CORRECTED_ERROR);

else

return (UNCORRECTED_ERROR);

}

} /* Done scanning main body of data structure */

/* Now examine header of data structure */

if((H->prev != prevP) || !correct(ID(H))) {

/* An error */

if(backscan(H, P, prevP) == CORRECTED_ERROR)

return(CORRECTED_ERROR);

else

return(UNCORRECTED_ERROR);

} /* end if */

/* Lastly, check count field in header */

if(H->numnodes != J) {

/* An error */

H->numnodes = J;

return(CORRECTED_ERROR);

}

/* No Errors */

return(NO_ERRORS);

} /* end of correctlist */

Paranoid Programming R4 Copyright © 8/5/98 by Stratu s Computer, Inc. 100

Code to Correct Errors in Design 2 Linear Linked Li st (2)
backscan (void *H, void *P, void *prevP) {

void *Q, *prevQ;

int J = 0;

prevQ = H;

Q = H->prev

while(J++ < H->numnodes) {

if((Q->next == prevQ) && (Q->ID == H->ID)) {

prevQ = Q;

Q = Q->prev;

}

else {

if(repair(P, prevP, Q, prevQ) == CORRECTED_ERROR)

return (CORRECTED_ERROR);

else

return (UNCORRECTED_ERROR);

} /* end of while */

} /* end of backscan */

repair (void *P, void *prevP, void *Q, void *prevQ) {

if((P == Q) && (P->ID != H->ID)) {

P->ID = H->ID;

return(CORRECTED_ERROR);

}

else if (P == prevQ) {

Q->prev = prevP;

return(CORRECTED_ERROR);

}

else if(prevP == Q) {

P->next = prevQ;

return(CORRECTED_ERROR);

}

else

return(UNCORRECTED_ERROR);

} /* end of repair */

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 101

Linear Linked List Correction Example

ID 3 … prev next ID … prev next ID … prev next

??? ??? ??? ???

H

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 102

Cost Effectiveness of Linked List Designs

0

1

2

3

4

5

6

7

Storage Cost Detectability Correctability Update Time

Nonrobust

Count, ID Fields, Loop

Double-Linked

Modified Double-Linked

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 103

Other Robust Data Structure Techniques

Other techniques are available in the literature

Structural techniques for popular data structures

Trees, stacks, fifos, heaps, queues, etc.

In general, a linked data structure is 2-detectable and 1-
correctable iff the pointer network is bi-connected

Content-based techniques

Checksums, encodings

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 104

Robust Data Structure Cost Effectiveness

Development Cost

Not too bad, especially if can reuse code for commo n data
structures (e.g., linked list manipulation / audit code)

Run Time Cost

Not excessive, especially if can run audits during slack times

Techniques can be selected / designed / tuned for l ow run time
overhead

Effectiveness

Highly effective at ferreting out and correcting st ructural flaws

Leveson et al found code-based self-checks far more effective
than multiversion programming

Less effective at tolerating semantic flaws

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 105

Issues with Robust Data Structures

Not a transparent technique

Relevant to a limited (but significant) class of er rors

Best at errors which corrupt the structure of the d ata

Data structure auditing / correction code is subtle , complex, difficult
to program, and prone to programming errors

Not for the squeamish

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 106

Structure Marking

Add TYPE, SIZE, VERSION, and OWNER to data structur e

TYPE: Unique number for each different structure

SIZE: in bytes

VERSION: Changed whenever structure declaration cha nges

OWNER: Unique ID of owner

Set them when the structure is instantiated

Check them before using structure instance

Clear or 0xdeadbeef them when the structure is deal located

TYPE
SIZE
VERSION
…
…structure data…
…
OWNER

RunAssert((s.TYPE == STYPE) &&

 (s.SIZE == SSIZE) &&

 (s.VERSION == SVERSION3) &&

 (s.OWNER == uid));

s.TYPE = s.SIZE = s.VERSION = s.OWNER = 0xdeadbeef;

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 107

Structure Marking Tips

Don’t use common values (0, 1) for TYPE

OWNER must be independent of structure contents; ca n be UID,
least significant bits of clock, etc.

Can find OWNER at sizeof(augmented structure) - siz eof(OWNER
field)

Can use sizeof() to generate SIZE field

Don’t use common values for VERSION

VERSION field helps find integration errors

VERSION field can be used as parameter to procedure to indicate
which version of structure to return; eases compati ble evolution

Obvious applicability to object-oriented systems; s et up the
markings in constructors; check them in the methods

Can augment robust data structures with structural marking

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 108

Structure Marking Effectiveness

Protects against

Clobbered data: wild stores, bit rot, data overruns

Programming errors: logic errors, incorrect calls, using data
after freeing or before allocating

System integration errors: notices cases where prog rams are
unable to handle the data they are passed

Not so effective against

Design and compiler errors: wrong algorithm or comp iler bug
can produce perfect structure with incorrect conten ts

Experience

Highly successful in MULTICs

Performance overhead quite low

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 109

Control Flow Monitoring

A technique to ensure that control flow goes throug h intended
paths

Example:
/* beginning of monitored code */

… BFI 3…

if (swizzle) {

…BFI 5…

}

else {

…BFI 7…

}

…BFI 11…

/* end of monitored code */

BFI 3

BFI 5 BFI 7

BFI 11

Erroneous
Control
Flow

(BFI = Branch-Free Interval)

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 110

Control Flow Monitoring using ECCA

Enhanced Control Flow Checking using Assertions (EC CA)

Assign each BFI a prime ID called
BID

Assign each BFI a value for NEXT
= product of all possible next
BIDs

#define BID 3
… BFI 3…
if (swizzle) {
#define BID 5
…BFI 5…
}
else {
#define BID 7
…BFI 7…
}
#define BID 11
…BFI 11…

#define BID 3
#define NEXT 5*7
… BFI 3…
if (swizzle) {
#define BID 5
#define NEXT 11
…BFI 5…
}
else {
#define BID 7
#define NEXT 11
…BFI 7…
}
#define BID 11
…BFI 11…

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 111

Control Flow Monitoring using ECCA

Add land mines: now there is now way to
get through the BFIs incorrectly

The final touch: now there is no way to
get out of an incorrectly entered BFI

#define BID 3
#define NEXT 5*7
… BFI 3…
id =NEXT;
if (swizzle) {
#define BID 5
#define NEXT 11
id = BID / ((!(id%BID)) ; /* check for illegal entr y */
…BFI 5…
id = NEXT; /* only update id when done with BFI */
}
else {
#define BID 7
#define NEXT 11
id = BID / ((!(id%BID)) ; /* check for illegal entr y */
…BFI 7…
id = NEXT;
}
#define BID 11
id = BID / ((!(id%BID)) ; /* check for illegal entr y */
…BFI 11…

#define BID 3
#define NEXT 5*7
… BFI 3…
id =NEXT;
if (swizzle) {
#define BID 5
#define NEXT 11
id = BID / ((!(id%BID)) * (id%2)); /* check */
…BFI 5…
id = NEXT+ !!(id - BID);
}
else {
#define BID 7
#define NEXT 11
id = BID / ((!(id%BID)) * (id%2)); /* check */
…BFI 7…
id = NEXT+ !!(id - BID);
}
#define BID 11
id = BID / ((!(id%BID)) * (id%2)); /* check */
…BFI 11…

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 112

Example
#define NEXT 5*7
… BFI 3…
id = NEXT+ !!(id - BID);

if (swizzle) {

/* if legal entry, id = 5*7 */
/* if illegal entry, id != 5*7, probably */
#define BID 5
#define NEXT 11
/* check for illegal entry */

id = BID / ((!(id%BID)) * (id%2));

 /* if legal entry, would get id = 5 / ((!(35%5)) = 5 / ((!0)) = 5 / 1 = 5 */
/* if illegal entry, would get id = 5 / ((!(id%5)) = 5 / ((!1)) = 5 / 0 = divide by zero error */

…BFI 5…

/* if exit out of BFI 5 before id = NEXT, will get caught at next illegal entry check with wrong id */

id = NEXT+ !!(id - BID); /* only update id when don e with BFI */

} /* end of BFI 5 */

This term checks that BFI5 was legally entered from
BFI 3.

This term checks that the previous BFI was not illegally
entered after its entry check.

This term declares that the only valid next BFI is BFI
11.

This clobbers the id if BFI 5 was entered somewhere in
its middle.

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 113

Control Flow Monitoring using ECCA

ECCA: Assertion Version
#define BID 3
… BFI 3…
#define NEXT 5*7
id =NEXT+ !!(id - BID);
if (swizzle) {
#define BID 5
RunAssert ((!(id%BID)) * (id%2)); id = BID;
…BFI 5…
#define NEXT 11
id = NEXT+ !!(id - BID);
}
else {
#define BID 7
RunAssert ((!(id%BID)) * (id%2)); id = BID;
…BFI 7…
#define NEXT 11
id = NEXT+ !!(id - BID);
}
#define BID 11
RunAssert ((!(id%BID)) * (id%2)); id = BID;
…BFI 11…

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 114

Control Flow Monitoring using ECCA

Advantages

Detects all single and most double control flow err ors

Preprocessor can be easily implemented

Low overhead if BFI is large

Can easily add assertions

Can turn on for debugging and off for shipping

Disadvantages

Must modify source code

High overhead if BFI is small

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 115

Programming for a High-Availability Cluster
Environment

Typical Configuration

Application 1

OS

HA SW, Scripts

Application 1

OS

HA SW, Scripts

Node 1 Node 2

Heartbeat LAN

Shared Disks

Private Disks Private Disks

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 116

Programming for a High-Availability Cluster
Environment

Functional Architecture (Qualix lingo)

Node 1

Service Manager

Scripts for SG 1
start
restart
stop
test
failed

Role Manager

Service Group 1

Application

Application

Application

Service Group N

Application

Application

Application

Scripts for SG N
start
restart
stop
test
failed

Operating System

To/From Role
Managers on other

Nodes

Resources
(e.g., disk)

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 117

Key Strategies

Automating application operation

Maximizing speed of application failover

Design for application migration

Insulate users from failover

Design applications to detect and recover from faul ts

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 118

Automating Application Operation

Application should be started or stopped without op erator or user
intervention

Define application startup and shutdown procedures

No operator intervention

Report startup/shutdown to HA monitor

Don’t let shutdown accidentally cause failover

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 119

Maximize Speed of Application Failover

Replicate code and data on multiple nodes if possib le

On shared disk, use raw volumes that do not require fsck

On shared disk, use journalled file system

Minimize data loss upon failure

Minimize in-memory volatile data

Use restartable transactions

Use checkpoints

Run active-active

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 120

Design for Application Migration

Avoid system-specific information

Each application should have its own IP#

Each application should have its own “hostname”

Let DNS do the work

Avoid SPU Ids or MAC addresses

Avoid uname(2)

Bind to a fixed port - don’t let the system choose one for you

Bind to a relocatable IP#

Call bind() before connect() to ensure the use of t he relocatable
IP#

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 121

Design for Application Migration

Give each application its own volume group

Volume groups are units of migration

If two applications use the same volume group, they must
migrate together

Avoid file locking if possible

Local locks will be unknown to recovered applicatio n - could
cause problems

Remote NFS locks will be unknown to recovered appli cation and
may never be released

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 122

Insulate Users from Failover

Try to require no user intervention to reconnect

Design client software to try to reconnect automati cally

Use transaction processing monitor or message queue ing
software to distribute, retry, and enqueue transact ions

Minimize re-entry of data

Restartable transactions and checkpointing

Minimize impact of failure

Design for reserve capacity to minimize performance
degradation upon failure

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 123

Handling Application Failures

Modularize applications and make components tolerat e each others’
failure

Attempt local restart of application components

Use techniques described in this course to detect a nd tolerate
application failures

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 124

Developing “Bug-Free” Code

Observation

Cost to fix increases 10X for each stage (design, u nit test,
system test, released) that bug discovery and corre ction is
delayed

Therefore we want to

Find bugs as early and as easily as possible

Find bugs automatically with minimal effort

Minimize the skill required to catch and fix bugs

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 125

Maintain a Ship and Debug Version

Maintain a ship and a debug version of the code

Debug version designed to catch bugs

Ship version designed to run quickly and reliably

Debug version

#ifdef DEBUG … #endif

Debug version must behave exactly the same as the s hip
version

Don’t apply ship constraints to debug version

Trade size and speed for error detection

Ship version

Use defensive programming techniques previously des cribed

Use run time assertions

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 126

Use Assertions

Three categories of assertions

Compiler assertions: CompileAssert

Debug time assertions: DebugAssert

Run time assertions: RunAssert

Assertions are used to provide compile-time or run- time checking
of design-time assumptions

General structure

Assert (expression that should be true)

Failed assertions cause compilation or runtime erro r

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 127

Compile-Time Assertions

Objective

Verify design-time assumptions at compile-time

Especially useful when maintenance programmer unkno wingly
violates design assumptions

Usage

…

char buffer[BUFSIZE];

…

CompilerAssert (ISPOWER2 (sizeof(buffer)));

A mechanization of CompilerAssert

#define CompilerAssert(exp) extern char _CompilerAs sert [(exp)
? 1 : -1]

#define ISPOWER2 (x) (!((x)&((x)-1)))

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 128

Debug Time Assertions

Debug time assertions are used to provide debug tim e checking of
design-time assumptions

Use debug time assertions to catch bugs

Validate function arguments and outputs

Catch undefined behavior

Audit data structures, logs, etc.

Validate that the results of debug-only redundant a lgorithm are
identical

Debug assertions MUST NOT

Disturb memory

Initialize data

Have ANY side effects

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 129

Debug Time Assertions

Usage: Should be true for execution to proceed
void func (int nValue)

{

DebugAssert(nValue>0)

{

…guarded code…

}

}

Definitions:
#define DebugAssert(exp) if (!(exp)) { \

ReportError(__FILE__, __LINE__); \

return(FALSE); \

}\

else

ReportError(char *strFILE, unsigned
uLINE)

{

fflush(stdout);

fprintf(stderr, “Assertion failure: file %s,
line %d\n”, strFILE, uLINE);

fflush(stderr);

exit(1);

}

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 130

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 131

Debug Time Assertion Tips

Debug time assertions are not used to catch errors that can occur in
practice

Example:
char *strdup (char *str)

{

char *strnew;

/* CORRECT: tests for illegal condition that should never occur.*/

DebugAssert(str != NULL);

strnew = (char *)malloc(strlen(str)+1);

/* WRONG: tests for error condition what will occur in practice and should be handled. */

DebugAssert(strnew !=NULL);

…

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 132

Debug Time Assertion Tips

Debug-time assertions MUST NOT

disturb memory

initialize data

have ANY side effects

WRONG:
DebugAssert ((x/=2) > 0);

RIGHT:
x/=2;

DebugAssert ((x) > 0);

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 133

Assertion Tips

Comment your assertions: what bug are they checking for, what
should the programmer try instead

The programmer that fires your assertion may assume the assertion
is erroneous, otherwise

Example of commented assertion
/* Do source and destination blocks overlap? Use me mmove. */

DebugAssert((pbTo >= pbFrom + size) || (pbFrom >= p bTo + size));

Example of assert.h from SunOS /usr/include
ifndef NDEBUG

define _assert(ex) {if (!(ex)){(void)fprintf(s tderr,"Assertion failed: file \"%s\", line
%d\n", __FILE__, __LINE__);exit(1);}}

define assert(ex) _assert(ex)

else

define _assert(ex)

define assert(ex)

endif

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 134

Design Error-Resistant Interfaces

In safety critical systems, most accidents occur du e to interface
errors

Assume that:

Your functions will be called with erroneous argume nts

Your error codes will be ignored

Functions you call will produce errors

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 135

Design Error-Resistant Interfaces

Use strong function prototypes

WRONG:
void *memchr (const void *pv, int ch, int size);

/* easy for caller to swap character and size args w ithout compiler warning */

RIGHT:
void *memchr (const void *pv, unsigned char ch, si ze_t size);

/* no way, now. */

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 136

Design Error-Resistant Interfaces

Don’t bury error codes in return values: make it ha rd to ignore them

WRONG:
char c:

….

c=getchar();

if (c == EOF)

{ end of file processing }

else

{ character processing }

…

RIGHT:
char c:

...

BOOL fgetchar (char *pch) /*
function prototype */

…

if(fgetchar (&c))

{c has character}

else

{EOF and c is unchanged}

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 137

Design Error-Resistant Interfaces

Don’t write multipurpose functions

Complex code paths are hard to test

It is hard to validate all input argument combinati ons using
assertions

Egregious example: realloc

Use simple functions

Simple function names

Simple code paths

Make each input and output represent exactly one ty pe of data

Easy for caller to understand simple functions

Easier to validate arguments using rigid assertions

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 138

Design Error-Resistant Interfaces

Make code intelligible at the point of call

Document calling example and emphasize potential ha zards

Encourage programmer to cut and paste your recommen ded usage

Example
/* realloc (void *pv, size_t size)

* typical use:

* void *pvnew; // used to protect pv if realloc fa ils

* pvNew = realloc(pv, sizeNew);

* if (pvNew != NULL) {

* //success…update pv

* pv = pvNew;

* }

* else

* \\failure – don’t destroy pv with the NULL pvNew

* /

void *realloc(void *pv, size_t size)

…

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 139

Design Error-Resistant Interfaces

Don’t pass data in global or static memory

Callers up or down the calling chain may be using o r may
clobber the data

Don’t use caller’s input buffers as a workspace

You don’t really know how big they are or whether y ou can
modify them

Use assertions to validate function arguments

Avoid Boolean arguments

Easy to forget what “TRUE” means

Easy for a fault to toggle TRUE and FALSE (NORAD fa ult)

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 140

Avoid Memory Theft

Don’t reference memory you don’t own or have freed

Especially memory-mapped I/O

Don’t reference memory that you think you have lock ed but don’t

This gave the SVR4 MP porters fits

Techniques

0xdeadbeef and 0xfeedbabe memory

Use robust data structures and structure marking

Perform BOTH allocation and deallocation on same si de of
interface

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 141

Make the Compiler Work for You

Enable all optional compiler warnings, including “r equire
prototypes for all functions”

Enable subscript range checking where possible

Leave on in ship code if possible

Use lint

Tolerate no compiler warnings

Turn off all compiler optimizations in debug versio n to facilitate
single-stepping through code

There are probably more bugs in your code than in t he
compiler

However, gcc optimization does provide some additio nal
error checking for “uninitialized variable” and “re turn
without value” errors

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 142

Avoid Risky Coding Style
Use well-defined data types: rely only on what the ANSI
standard specifically guarantees to be portable

char 0 .. 127

signed char -127 .. 127

unsigned char 0 .. 255

Unknown size, but no smaller than 8 bits

short -32767 .. 32767

signed short -32767 .. 32767

unsigned short 0 .. 65535

Unknown size, but no smaller than 16 bits

int -32767 .. 32767

signed int -32767 .. 32767

unsigned int 0 .. 65535

Unknown size, but no smaller than 16 bits

long -2147483647 .. 2147483647

signed long -2147483647 .. 2147483647

unsigned long 0 .. 2147483647

Unknown size, but no smaller than 32 bits

int i : n 0 .. (2 (n-1) -1)

signed int i : n -(2 (n-1) -1) .. (2(n-1) -1)

unsigned int i : n 0 .. (2 (n-1) -1)

Unknown size, but at least n bits

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 143

Avoid Risky Coding Style

Look for underflows and overflows of variables

Avoid risky idioms

Don’t mix operator types

If you must, use ()’s to enforce precedence and ty pe

If you have to look up precedence in the manual, us e ()’s

Write boring code that is legible by the average pr ogrammer

Tight C does not guarantee efficient machine code; it does
guarantee subsequent confusion

We read code more often than we write it

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 144

Try Hungarian Notation

Makes it possible to identify types as you read the code without
seeing the variable declaration

a array

f boolean flag

b byte

ch char

dw dword

h handle

l long

lp long pointer

n int

p pointer

w word

Variable name = prefix + Descriptive name

Examples: pchTo, phObjHandle, pbNew, phObjHandle->l ength

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 145

Software Development Hygiene

Single-step through every code path of all new or m odified code

Focus on data flow and state transformations

Don’t clean up old code unless absolutely necessary

Don’t implement nonstrategic or unnecessary feature s

Don’t implement “free” features

Don’t implement unnecessary flexibility

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 146

Error Handling and Reporting Principles

Always check for error codes returned by procedures and functions

Use common, gathered cleanup paths

Ensure that locks are released and memory is deallo cated before
calling error handling routine that may exit

Keep recovery code simple (remember the VOS outage data?)

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 147

Concurrent Programming

Concurrent programming is difficult to get right an d difficult to
debug

Don’t use concurrency unless you have to

Identify the benefits of concurrency before you use it

Avoid gratuitous nondeterminacy; it’s going to be h ard enough to
debug already

Don’t confuse semaphores with condition variables

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 148

Concurrent Programming

Learn concurrent programming from a good book

Concurrent Programming, Andrews

Concurrent Systems, Bacon

Multithreaded Programming with Windows NT, Pham and Garg

Use or build a library of standard concurrent progr amming
primitives

Semaphores, monitors / condition variables

Ad hoc devices are almost certainly buggy, offer in complete
semantics, or are very hard to use

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 149

Testing

People are optimists and test to show that code doe s work

Most programmers quit testing when 60% of the code has been
tested

Write and test code in small chunks as they are com pleted

Try to test under conditions that approximate reali ty

Fix bugs as you find them, not later

Use code coverage tool to grade testing effectivene ss

Test all error handling and recovery (remember the VOS outage
data?)

It doesn’t get used very often

It doesn’t get used unless there is already a probl em

It is hard to test

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 150

Eliminate Random Behavior, at Least in Debug Versio n

Force bugs to be reproducible

0xfeedbabe newly allocated memory

0xdeadbeef newly deallocated memory

Make sure routines can be made to produce same outp ut for same
input so regression testing will work

Be able to freeze dates, timestamps, random numbers , etc.

Augment data structures with auditable structures a nd logs

Be careful to ensure that logs and auditing do not cause
behavior of debug version to differ from ship versi on

Unless you want to use auditable data structures in the ship
version

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 151

Inspections

Inspection definition:

Group evaluation of a work product for the purpose of finding
defects

Inspections are:

Formal: Well-defined roles, responsibilities, and p rocedures

Documented in Stratus SED-2014, Work Product Inspection
Procedure

Flexible: Applicable to all types of work products

Specs, designs, code, test plans, …

Economical: Allow defects to be uncovered and remov ed early
in the process when they are easier and cheaper to fix

Efficient: Structured nature of inspections ensures that time is
spent productively

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 152

Inspections

Inspections are NOT:

Brainstorming sessions to find solutions to problem s

Performance review of author of the inspected work product

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 153

Inspection Process (1)

Planning

Identify author, moderator, recorder, inspectors an d allocate
their time

Setup

Distribute materials and book the room

Preparation

Inspectors review work product and record all defec ts

1:1 to 2:1 ratio preparation time to meeting time i s appropriate

The Meeting

Walk through work product and record / classify def ects and
issues

4 possible outcomes: approved, not approved, condit ional
approval, and inspection incomplete

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 154

Inspection Process (2)
Reporting

Written and distributed by moderator summarizing th e
inspection

Rework

Author owns all defects and is responsible for addr essing each

Verification

If conditionally approved, verifier is appointed to confirm that
defects have been addressed

Analysis

Analyze results to see if process can be improved

Provide statistics to show effectiveness of the pro cess, provide
planning data, demonstrate quality achievements, de monstrate
productivity gains, etc.

Can lead to checklist updates, process changes, doc umentation
changes, training plans, etc.

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 155

Inspection Productivity

IBM, 1975

Inspecting test plans, test designs, and test cases reduced unit
test time by up to 85%

Imperial Chemical Industries, 1982

Program maintenance effort was 0.6 minutes/line/yea r for
inspected code, 7 minutes/line/year for uninspected code

ICL, 1986

1.58 person-hours cost to find defect in inspection , 8.47 person-
hours cost to find detect in test

Stratus Continuum Languages Group, 1995

Inspection time / total project time = 10%

64% of all defects were found in inspection

 Total inspection cost = cost of fixing 61 field bu gs

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 156

Many More Techniques are Available

Process Improvements

Formal Specification and Verification

Structured exception handling

...

These techniques can be added to future courses as needed

Feel free to call on me at any time during your car eer at Stratus for
consultation on using paranoid programming in your jobs

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 157

Recommended Reading

Your course papers

Software Fault Tolerance, by Michael Lyu, Ed.

Safeware, by Nancy Leveson

Safer C, by Les Hatton

Proceedings of the IEEE Fault Tolerant Computing Sy mposia

C Traps and Pitfalls, by Andrew Koenig

Writing Solid Code, by Steve Maguire

www.rstcorp.com

Paranoid Programming R6 Copyright © 8/5/98 by Stratu s Computer, Inc. 158

List of Course Papers
“Fault Tolerance in Commercial Computers,” D. Siewiorek, IEEE Computer, July 1990.

“A Census of Tandem System Availability Between 1985 and 1990,” J. Gray, IEEE Transactions on Reliability, Vol.39, No. 4, October 1990.

 “Software Dependability in the Tandem Guardian System,” I. Lee and R. Iyer, IEEE Transactions on Software Engineering, Vol. 21, No. 5, May
1995.

“Study of Fault Propagation Using Fault Injection in the UNIX System,” W. Kao, et. al., Proceedings of the Second Asian Test Symposium,
November 1993.

“Ariane 5 Flight 501 Failure Report by the Inquiry Board,” J. Lions, July 1996, http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html.

“Dependable Computing and Fault Tolerance: Concepts and Terminology,” J.-C. Laprie, Proceedings of the 15th International Symposium on
Fault Tolerant Computing, June 1985.

“Software Implemented Fault Tolerance: Technologies and Experience,” Y. Huang and C. Kintala, Proceedings of the 23rd International
Symposium on Fault Tolerant Computing, June 1993.

“Checkpointing and Its Applications,” Y. Huang et. al., Proceedings of the 25th International Symposium on Fault Tolerant Computing, June 1995.

“System Structure for Software Fault Tolerance,” B. Randell, IEEE Transactions on Software Engineering, Vol. 1, No. 2, February 1990.

“Why Do Computers Stop and What Can Be Done About It?,” J. Gray, Tandem Computers Technical Report 85.7, June 1985.

“Fault Tolerance by Design Diversity: Concepts and Experiments,” A. Avizienis and J. Kelly, IEEE Computer, August 1984.

“The N-Version Approach to Fault Tolerant Software,” A. Avizienis, IEEE Transactions on Software Engineering, December 1985.

 “Redundancy in Data Structures: Improving Software Fault Tolerance,” D. Taylor et. al., IEEE Transactions on Software Engineering, November
1980.

“A Compendium of Robust Data Structures,” J. P. Black et. al., Proceedings of the 11th International Symposium on Fault Tolerant Computing,
June 1991.

“Design of a Portable Control-Flow Checking Technique,” Z. Alkhalifa and V. Nair, Proceedings of the High Assurance Systems Engineering
Workshop, August 1997.

“Designing Highly Available Cluster Applications,” J. Foxcroft, Proceedings of the 1996 InterWorks Conference,
http://www.interworks.org/conference/IWorks96/sessions/apps4HAabs.html.

